1. IMPLEMENT AND DEMONSTRATE THE FIND-S ALGORITHM FOR FINDING THE MOST SPECIFIC HYPOTHESIS BASED ON A GIVEN SET OF TRAINING DATA SAMPLES. READ THE TRAINING DATA FROM A.CSV FILE.
SOLUTION 1 - To display only the final output
trainingdata.csv
prog1.py
import csv
h=['0'for i in range(6)]
with open("trainingdata.csv") as f:
data=csv.reader(f)
data=list(data)
for i in data:
if i[-1]=="Yes":
for j in range(6):
if h[j]=='0':
h[j]=i[j]
elif h[j]!=i[j]:
h[j]='?'
print(h)
Output
['Sunny', 'Warm', '?', 'Strong', '?', '?']
OR
SOLUTION 1 - To display steps & final output
import csv
h=['0'for i in range(6)]
with open("trainingdata.csv") as f:
data=csv.reader(f)
data=list(data)
print("The +ve examples are:")
for i in data:
if i[-1]=="Yes":
print(i)
print("\nThe steps of Find-S Algo are:")
for i in data:
if i[-1]=="Yes":
for j in range(6):
if h[j]=='0':
h[j]=i[j]
elif h[j]!=i[j]:
h[j]='?'
print(h)
print("\nFinal specific hypothesis:\n",h)
Output
The +ve examples are:
['Sunny', 'Warm', 'Normal', 'Strong', 'Warm', 'Same', 'Yes']
['Sunny', 'Warm', 'High', 'Strong', 'Warm', 'Same', 'Yes']
['Sunny', 'Warm', 'High', 'Strong', 'Cool', 'Change', 'Yes']
The steps of Find-S Algo are:
['Sunny', 'Warm', '?', 'Strong', 'Warm', 'Same']
['Sunny', 'Warm', '?', 'Strong', 'Warm', 'Same']
['Sunny', 'Warm', '?', 'Strong', '?', 'Same']
['Sunny', 'Warm', '?', 'Strong', '?', '?']
Final specific hypothesis:
['Sunny', 'Warm', '?', 'Strong', '?', '?']
SOLUTION 2
trainingdata.csv
lab1.py
import csv
hypo = ['%','%','%','%','%','%'];
with open('trainingdata.csv') as csv_file:
readcsv = csv.reader(csv_file, delimiter=',')
print(readcsv)
data = []
print("\nThe given training examples are:")
for row in readcsv:
print(row)
if row[len(row)-1].upper() == "YES":
data.append(row)
print("\nThe positive examples are:");
for x in data:
print(x);
print("\n");
TotalExamples = len(data);
i=0;
j=0;
k=0;
print("The steps of the Find-s algorithm are :\n",hypo);
list = [];
p=0;
d=len(data[p])-1;
for j in range(d):
list.append(data[i][j]);
hypo=list;
i=1;
for i in range(TotalExamples):
for k in range(d):
if hypo[k]!=data[i][k]:
hypo[k]='?';
k=k+1;
else:
hypo[k];
print(hypo);
i=i+1;
print("\nThe maximally specific Find-s hypothesis for the given training examples is :");
list=[];
for i in range(d):
list.append(hypo[i]);
print(list);
STEPS & OUTPUT:
to view steps & output click HERE
SOLUTION 1 - To display only the final output
trainingdata.csv
Sunny
|
Warm
|
Normal
|
Strong
|
Warm
|
Same
|
Yes
|
Sunny
|
Warm
|
High
|
Strong
|
Warm
|
Same
|
Yes
|
Rainy
|
Cold
|
High
|
Strong
|
Warm
|
Change
|
No
|
Sunny
|
Warm
|
High
|
Strong
|
Cool
|
Change
|
Yes
|
prog1.py
import csv
h=['0'for i in range(6)]
with open("trainingdata.csv") as f:
data=csv.reader(f)
data=list(data)
for i in data:
if i[-1]=="Yes":
for j in range(6):
if h[j]=='0':
h[j]=i[j]
elif h[j]!=i[j]:
h[j]='?'
print(h)
Output
['Sunny', 'Warm', '?', 'Strong', '?', '?']
OR
SOLUTION 1 - To display steps & final output
import csv
h=['0'for i in range(6)]
with open("trainingdata.csv") as f:
data=csv.reader(f)
data=list(data)
print("The +ve examples are:")
for i in data:
if i[-1]=="Yes":
print(i)
print("\nThe steps of Find-S Algo are:")
for i in data:
if i[-1]=="Yes":
for j in range(6):
if h[j]=='0':
h[j]=i[j]
elif h[j]!=i[j]:
h[j]='?'
print(h)
print("\nFinal specific hypothesis:\n",h)
Output
The +ve examples are:
['Sunny', 'Warm', 'Normal', 'Strong', 'Warm', 'Same', 'Yes']
['Sunny', 'Warm', 'High', 'Strong', 'Warm', 'Same', 'Yes']
['Sunny', 'Warm', 'High', 'Strong', 'Cool', 'Change', 'Yes']
The steps of Find-S Algo are:
['Sunny', 'Warm', '?', 'Strong', 'Warm', 'Same']
['Sunny', 'Warm', '?', 'Strong', 'Warm', 'Same']
['Sunny', 'Warm', '?', 'Strong', '?', 'Same']
['Sunny', 'Warm', '?', 'Strong', '?', '?']
Final specific hypothesis:
['Sunny', 'Warm', '?', 'Strong', '?', '?']
SOLUTION 2
trainingdata.csv
Sunny
|
Warm
|
Normal
|
Strong
|
Warm
|
Same
|
Yes
|
Sunny
|
Warm
|
High
|
Strong
|
Warm
|
Same
|
Yes
|
Rainy
|
Cold
|
High
|
Strong
|
Warm
|
Change
|
No
|
Sunny
|
Warm
|
High
|
Strong
|
Cool
|
Change
|
Yes
|
lab1.py
import csv
hypo = ['%','%','%','%','%','%'];
with open('trainingdata.csv') as csv_file:
readcsv = csv.reader(csv_file, delimiter=',')
print(readcsv)
data = []
print("\nThe given training examples are:")
for row in readcsv:
print(row)
if row[len(row)-1].upper() == "YES":
data.append(row)
print("\nThe positive examples are:");
for x in data:
print(x);
print("\n");
TotalExamples = len(data);
i=0;
j=0;
k=0;
print("The steps of the Find-s algorithm are :\n",hypo);
list = [];
p=0;
d=len(data[p])-1;
for j in range(d):
list.append(data[i][j]);
hypo=list;
i=1;
for i in range(TotalExamples):
for k in range(d):
if hypo[k]!=data[i][k]:
hypo[k]='?';
k=k+1;
else:
hypo[k];
print(hypo);
i=i+1;
print("\nThe maximally specific Find-s hypothesis for the given training examples is :");
list=[];
for i in range(d):
list.append(hypo[i]);
print(list);
STEPS & OUTPUT:
to view steps & output click HERE
No comments:
Post a Comment