Wednesday, July 3, 2019

ML 9 - K-NEAREST NEIGHBOUR ALGORITHM

9. WRITE A PROGRAM TO IMPLEMENT K-NEAREST NEIGHBOUR ALGORITHM TO CLASSIFY THE IRIS DATA SET. PRINT BOTH CORRECT AND WRONG PREDICTIONS. JAVA/PYTHON ML LIBRARY CLASSES CAN BE USED FOR THIS PROBLEM.

 SOLUTION 1 

 NO DATASET FOR SOLUTION 1 

 REQUIRES INTERNET 


lab9.py

from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
import numpy as np

dataset=load_iris()
X_train,X_test,y_train,y_test=train_test_split(dataset["data"],dataset["target"],random_state=0)

kn=KNeighborsClassifier(n_neighbors=1)
kn.fit(X_train,y_train)

for i in range(len(X_test)):
    x=X_test[i]
    x_new=np.array([x])
    prediction=kn.predict(x_new)
    print("TARGET=",y_test[i],dataset["target_names"] [y_test[i]],"PREDICTED=",prediction,dataset["target_names"][prediction])

print(kn.score(X_test,y_test))

STEPS & OUTPUT:

to view steps & output click HERE

 SOLUTION  2 

iris_data.csv


5.1 3.5 1.4 0.2 Iris-setosa
4.9 3 1.4 0.2 Iris-setosa
4.7 3.2 1.3 0.2 Iris-setosa
4.6 3.1 1.5 0.2 Iris-setosa
5 3.6 1.4 0.2 Iris-setosa
5.4 3.9 1.7 0.4 Iris-setosa
4.6 3.4 1.4 0.3 Iris-setosa
5 3.4 1.5 0.2 Iris-setosa
4.4 2.9 1.4 0.2 Iris-setosa
4.9 3.1 1.5 0.1 Iris-setosa
5.4 3.7 1.5 0.2 Iris-setosa
4.8 3.4 1.6 0.2 Iris-setosa
4.8 3 1.4 0.1 Iris-setosa
4.3 3 1.1 0.1 Iris-setosa
5.8 4 1.2 0.2 Iris-setosa
5.7 4.4 1.5 0.4 Iris-setosa
5.4 3.9 1.3 0.4 Iris-setosa
5.1 3.5 1.4 0.3 Iris-setosa
5.7 3.8 1.7 0.3 Iris-setosa
5.1 3.8 1.5 0.3 Iris-setosa
5.4 3.4 1.7 0.2 Iris-setosa
5.1 3.7 1.5 0.4 Iris-setosa
4.6 3.6 1 0.2 Iris-setosa
5.1 3.3 1.7 0.5 Iris-setosa
4.8 3.4 1.9 0.2 Iris-setosa
5 3 1.6 0.2 Iris-setosa
5 3.4 1.6 0.4 Iris-setosa
5.2 3.5 1.5 0.2 Iris-setosa
5.2 3.4 1.4 0.2 Iris-setosa
4.7 3.2 1.6 0.2 Iris-setosa
4.8 3.1 1.6 0.2 Iris-setosa
5.4 3.4 1.5 0.4 Iris-setosa
5.2 4.1 1.5 0.1 Iris-setosa
5.5 4.2 1.4 0.2 Iris-setosa
4.9 3.1 1.5 0.1 Iris-setosa
5 3.2 1.2 0.2 Iris-setosa
5.5 3.5 1.3 0.2 Iris-setosa
4.9 3.1 1.5 0.1 Iris-setosa
4.4 3 1.3 0.2 Iris-setosa
5.1 3.4 1.5 0.2 Iris-setosa
5 3.5 1.3 0.3 Iris-setosa
4.5 2.3 1.3 0.3 Iris-setosa
4.4 3.2 1.3 0.2 Iris-setosa
5 3.5 1.6 0.6 Iris-setosa
5.1 3.8 1.9 0.4 Iris-setosa
4.8 3 1.4 0.3 Iris-setosa
5.1 3.8 1.6 0.2 Iris-setosa
4.6 3.2 1.4 0.2 Iris-setosa
5.3 3.7 1.5 0.2 Iris-setosa
5 3.3 1.4 0.2 Iris-setosa
7 3.2 4.7 1.4 Iris-versicolor
6.4 3.2 4.5 1.5 Iris-versicolor
6.9 3.1 4.9 1.5 Iris-versicolor
5.5 2.3 4 1.3 Iris-versicolor
6.5 2.8 4.6 1.5 Iris-versicolor
5.7 2.8 4.5 1.3 Iris-versicolor
6.3 3.3 4.7 1.6 Iris-versicolor
4.9 2.4 3.3 1 Iris-versicolor
6.6 2.9 4.6 1.3 Iris-versicolor
5.2 2.7 3.9 1.4 Iris-versicolor
5 2 3.5 1 Iris-versicolor
5.9 3 4.2 1.5 Iris-versicolor
6 2.2 4 1 Iris-versicolor
6.1 2.9 4.7 1.4 Iris-versicolor
5.6 2.9 3.6 1.3 Iris-versicolor
6.7 3.1 4.4 1.4 Iris-versicolor
5.6 3 4.5 1.5 Iris-versicolor
5.8 2.7 4.1 1 Iris-versicolor
6.2 2.2 4.5 1.5 Iris-versicolor
5.6 2.5 3.9 1.1 Iris-versicolor
5.9 3.2 4.8 1.8 Iris-versicolor
6.1 2.8 4 1.3 Iris-versicolor
6.3 2.5 4.9 1.5 Iris-versicolor
6.1 2.8 4.7 1.2 Iris-versicolor
6.4 2.9 4.3 1.3 Iris-versicolor
6.6 3 4.4 1.4 Iris-versicolor
6.8 2.8 4.8 1.4 Iris-versicolor
6.7 3 5 1.7 Iris-versicolor
6 2.9 4.5 1.5 Iris-versicolor
5.7 2.6 3.5 1 Iris-versicolor
5.5 2.4 3.8 1.1 Iris-versicolor
5.5 2.4 3.7 1 Iris-versicolor
5.8 2.7 3.9 1.2 Iris-versicolor
6 2.7 5.1 1.6 Iris-versicolor
5.4 3 4.5 1.5 Iris-versicolor
6 3.4 4.5 1.6 Iris-versicolor
6.7 3.1 4.7 1.5 Iris-versicolor
6.3 2.3 4.4 1.3 Iris-versicolor
5.6 3 4.1 1.3 Iris-versicolor
5.5 2.5 4 1.3 Iris-versicolor
5.5 2.6 4.4 1.2 Iris-versicolor
6.1 3 4.6 1.4 Iris-versicolor
5.8 2.6 4 1.2 Iris-versicolor
5 2.3 3.3 1 Iris-versicolor
5.6 2.7 4.2 1.3 Iris-versicolor
5.7 3 4.2 1.2 Iris-versicolor
5.7 2.9 4.2 1.3 Iris-versicolor
6.2 2.9 4.3 1.3 Iris-versicolor
5.1 2.5 3 1.1 Iris-versicolor
5.7 2.8 4.1 1.3 Iris-versicolor
6.3 3.3 6 2.5 Iris-virginica
5.8 2.7 5.1 1.9 Iris-virginica
7.1 3 5.9 2.1 Iris-virginica
6.3 2.9 5.6 1.8 Iris-virginica
6.5 3 5.8 2.2 Iris-virginica
7.6 3 6.6 2.1 Iris-virginica
4.9 2.5 4.5 1.7 Iris-virginica
7.3 2.9 6.3 1.8 Iris-virginica
6.7 2.5 5.8 1.8 Iris-virginica
7.2 3.6 6.1 2.5 Iris-virginica
6.5 3.2 5.1 2 Iris-virginica
6.4 2.7 5.3 1.9 Iris-virginica
6.8 3 5.5 2.1 Iris-virginica
5.7 2.5 5 2 Iris-virginica
5.8 2.8 5.1 2.4 Iris-virginica
6.4 3.2 5.3 2.3 Iris-virginica
6.5 3 5.5 1.8 Iris-virginica
7.7 3.8 6.7 2.2 Iris-virginica
7.7 2.6 6.9 2.3 Iris-virginica
6 2.2 5 1.5 Iris-virginica
6.9 3.2 5.7 2.3 Iris-virginica
5.6 2.8 4.9 2 Iris-virginica
7.7 2.8 6.7 2 Iris-virginica
6.3 2.7 4.9 1.8 Iris-virginica
6.7 3.3 5.7 2.1 Iris-virginica
7.2 3.2 6 1.8 Iris-virginica
6.2 2.8 4.8 1.8 Iris-virginica
6.1 3 4.9 1.8 Iris-virginica
6.4 2.8 5.6 2.1 Iris-virginica
7.2 3 5.8 1.6 Iris-virginica
7.4 2.8 6.1 1.9 Iris-virginica
7.9 3.8 6.4 2 Iris-virginica
6.4 2.8 5.6 2.2 Iris-virginica
6.3 2.8 5.1 1.5 Iris-virginica
6.1 2.6 5.6 1.4 Iris-virginica
7.7 3 6.1 2.3 Iris-virginica
6.3 3.4 5.6 2.4 Iris-virginica
6.4 3.1 5.5 1.8 Iris-virginica
6 3 4.8 1.8 Iris-virginica
6.9 3.1 5.4 2.1 Iris-virginica
6.7 3.1 5.6 2.4 Iris-virginica
6.9 3.1 5.1 2.3 Iris-virginica
5.8 2.7 5.1 1.9 Iris-virginica
6.8 3.2 5.9 2.3 Iris-virginica
6.7 3.3 5.7 2.5 Iris-virginica
6.7 3 5.2 2.3 Iris-virginica
6.3 2.5 5 1.9 Iris-virginica
6.5 3 5.2 2 Iris-virginica
6.2 3.4 5.4 2.3 Iris-virginica
5.9 3 5.1 1.8 Iris-virginica


lab9.py

from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix

import pandas as pd
import numpy as np
from sklearn import datasets

iris=datasets.load_iris()
iris_data=iris.data
iris_labels=iris.target
print(iris_data)

x_train, x_test, y_train, y_test=(train_test_split(iris_data, iris_labels, test_size=0.20))
classifier=KNeighborsClassifier(n_neighbors=6)
classifier.fit(x_train, y_train)
y_pred=classifier.predict(x_test)

print("accuracy is")

print(classification_report(y_test, y_pred))

STEPS & OUTPUT:

to view steps & output click HERE

No comments:

Post a Comment