4. BUILD AN ARTIFICIAL NEURAL NETWORK BY IMPLEMENTING THE BACKPROPAGATION ALGORITHM AND TEST THE SAME USING APPROPRIATE DATASETS.
SOLUTION
NO DATASET
lab4.py
import numpy as np
X = np.array(([2, 9], [1, 5], [3, 6]), dtype=float)
y = np.array(([92], [86], [89]), dtype=float)
X = X/np.amax(X, axis=0)
y = y/100
class Neural_Network(object):
def __init__(self):
self.inputSize = 2
self.outputSize = 1
self.hiddenSize = 3
self.W1 = np.random.randn(self.inputSize, self.hiddenSize)
self.W2 = np.random.randn(self.hiddenSize, self.outputSize)
def forward(self, X):
self.z = np.dot(X, self.W1)
self.z2 = self.sigmoid(self.z)
self.z3 = np.dot(self.z2, self.W2)
o = self.sigmoid(self.z3)
return o
def sigmoid(self, s):
return 1/(1+np.exp(-s))
def sigmoidPrime(self, s):
return s * (1 - s)
def backward(self, X, y, o):
self.o_error = y - o
self.o_delta = self.o_error*self.sigmoidPrime(o)
self.z2_error = self.o_delta.dot(self.W2.T)
self.z2_delta = self.z2_error*self.sigmoidPrime(self.z2)
self.W1 += X.T.dot(self.z2_delta)
self.W2 += self.z2.T.dot(self.o_delta)
def train (self, X, y):
o = self.forward(X)
self.backward(X, y, o)
NN = Neural_Network()
for i in range(1000):
print ("\nInput: \n" + str(X))
print ("\nActual Output: \n" + str(y))
print ("\nPredicted Output: \n" + str(NN.forward(X)))
print ("\nLoss: \n" + str(np.mean(np.square(y - NN.forward(X)))))
NN.train(X, y)
STEPS & OUTPUT:
to view steps & output click HERE
SOLUTION
NO DATASET
lab4.py
import numpy as np
X = np.array(([2, 9], [1, 5], [3, 6]), dtype=float)
y = np.array(([92], [86], [89]), dtype=float)
X = X/np.amax(X, axis=0)
y = y/100
class Neural_Network(object):
def __init__(self):
self.inputSize = 2
self.outputSize = 1
self.hiddenSize = 3
self.W1 = np.random.randn(self.inputSize, self.hiddenSize)
self.W2 = np.random.randn(self.hiddenSize, self.outputSize)
def forward(self, X):
self.z = np.dot(X, self.W1)
self.z2 = self.sigmoid(self.z)
self.z3 = np.dot(self.z2, self.W2)
o = self.sigmoid(self.z3)
return o
def sigmoid(self, s):
return 1/(1+np.exp(-s))
def sigmoidPrime(self, s):
return s * (1 - s)
def backward(self, X, y, o):
self.o_error = y - o
self.o_delta = self.o_error*self.sigmoidPrime(o)
self.z2_error = self.o_delta.dot(self.W2.T)
self.z2_delta = self.z2_error*self.sigmoidPrime(self.z2)
self.W1 += X.T.dot(self.z2_delta)
self.W2 += self.z2.T.dot(self.o_delta)
def train (self, X, y):
o = self.forward(X)
self.backward(X, y, o)
NN = Neural_Network()
for i in range(1000):
print ("\nInput: \n" + str(X))
print ("\nActual Output: \n" + str(y))
print ("\nPredicted Output: \n" + str(NN.forward(X)))
print ("\nLoss: \n" + str(np.mean(np.square(y - NN.forward(X)))))
NN.train(X, y)
STEPS & OUTPUT:
to view steps & output click HERE
No comments:
Post a Comment